# Особенности расчета и применения критериев оценки трансформаторного масла по данным эксплуатации

ТЮМЕНЬ

**И.В. Давиденко,** д.т.н., профессор кафедры «Электрические машины» Уральского Федерального Университета,

**М.Н. Владимирова**, ведущий инженер сектора диагностики Элактротехнической службы Департамента эксплуатации и ремонта ОАО «Тюменьэнерго»



#### О компании

- ОАО «Тюменьэнерго» одна из крупнейших в России межрегиональных распределительных сетевых компаний. Дата образования - 3 мая 1979 года. В качестве межрегиональной сетевой компании функционирует с 2005 года.
- Территория зоны обслуживания ОАО «Тюменьэнерго» составляет более 1,4 млн. квадратных километров и включает Тюменскую область, Ханты-Мансийский автономный округ - Югру и Ямало-Ненецкий автономный округ с населением около 3,5 миллионов человек.
- Годовой объем передачи электроэнергии по сетям ОАО «Тюменьэнерго» составляет около 70 млрд.кВт/ч.
- Протяженность линий электропередачи по цепям 45071 км.
- В настоящее время в ОАО «Тюменьэнерго» сосредоточены внушительные мощности: 635 подстанций 35-220 кВ, около 5,5 тысяч трансформаторных подстанций 6-10/04 кВ, суммарной трансформаторной мощностью 27339 MBA.
- В состав Общества входят 9 электросетевых филиалов, обеспечивающих выполнение функций, связанных с передачей и распределением электрической энергии



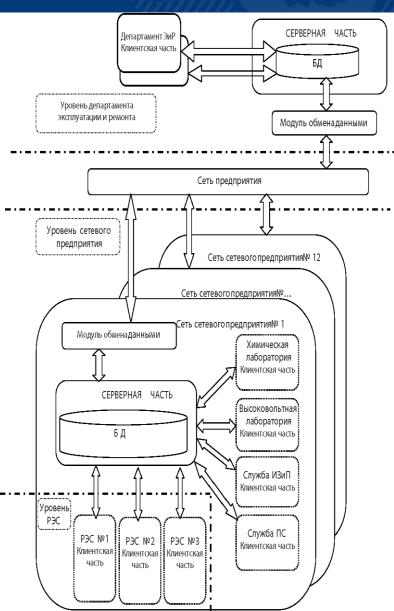
### Необходимость работы

Состояние жидкой изоляции маслонаполненного оборудования во многом является определяющим фактором, как для оценки его технического состояния, так и для продления сроков его эксплуатации.

Существующий подход в оценке жидкой изоляции не учитывает индивидуального структурно-группового состава масла, а также деструктивные изменения, происходящие с ним в процессе эксплуатации под влиянием особенностей конструкции и режима работы оборудования.

В условиях отсутствия в отраслевых РД диагностических критериев, адекватных современному пониманию процессов, происходящих в оборудовании, средствам и методам диагностики предприятия вынуждены выпускать свои корпоративные стандарты.

Местные стандарты, как правило, охватывают более широкий спектр контролируемых параметров, пересматриваются чаще и могут оперативно реагировать на изменения в парке оборудования энергокомпании.




### Схема сбора данных в ОАО «Тюменьэнерго»

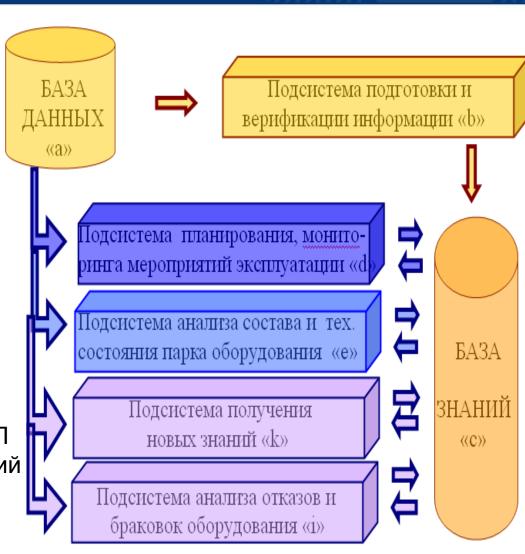
С одной стороны в ОАО «Тюменьэнерго» была потребность в получении объективных критериев диагностики, а с другой стороны есть возможность получения этих критериев с помощью авторской методики и больших массивов результатов измерений, накопленных в БД экспертно-диагностической системы (ЭДИС) «Альбатрос».

Начало внедрения ЭДИС в ОАО «Тюменьэнерго» - 1996 г.

С 2004г ЭДИС функционирует как единая корпоративная система, ей оснащены все 12 сетевых филиалов (СИЗП, СПС, ХЛ) и ИА. Сейчас это 70 рабочих мест. Информация об электрооборудовании из 12 БД филиалов автоматически аккумулируется в БД управления.






### Структура ЭДИС «Альбатрос»

Для диагностирования МЭО ЭДИС использует:

- *ΑΡΓ*;
- расширенный ФХА масла (15 параметров, в т.ч. удельное объемное сопротивление масла);
- измерения изоляционных характеристик;
- омическое сопротивление обмоток;
- сопротивление короткого замыкания;
- результаты опыта холостого хода;

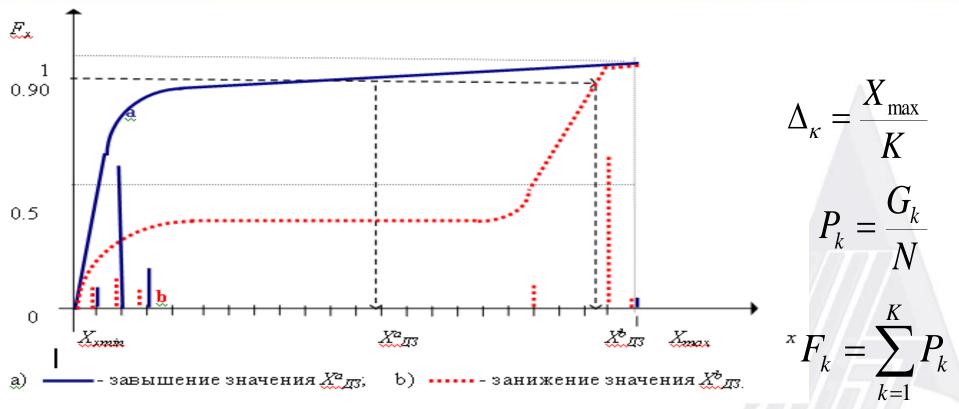
Для расчетов ПДЗ при разработке СП использовались результаты испытаний масла, занесенные в БД ЭДИС (шт.):

APΓ ΦΧΑ
TH -3248 TH -6237
TT -10052 TT- 15608
TC -35568 TC-16567





### Подсистема получения новых знаний ЭДИС


N.6

•Позволяет получать выборки по любому набору измеряемых параметров и динамики их изменений с указанием диапазонов их

изменений, проводить НИР по расчету критериев диагностики на основании данных эксплуатации Панель Выбор нужного Выбор Главная Панель параметров дисперсионно расчета ПДЗ вида и группы **УСЛОВИЙ** панель го анализа оборудования фильтрации данных измерений управляющих данных элементов Статистическая выборка параметров измерений VXAPF V ФXAM VISON V Тренды X Фильтр X Расчет ВПечать Г Условия фильтра ХАРГ У ФХАМ | Хар. изоляции | Результат | График | Тренды | Обязательные для заполнения данные Параметры расчета: Вид оборудования Группа оборудовани **Уровень** фактора TC +AT +PEA+ ▼ Силовые трансф. Измерительные С Вводы Медианное распределени Сглаживание Сглаживание макс.значен ий % выборки до 10 Срок эксплуатации(гг.) от Выбор условий фильтра Год выпуска (ввода в эксплуатацу Изменение с периодом, гг. -Регион **▼** Bce ▼ ХАР=1/ФХАМ=0 Г Скорости=1/Параметры=0  $\neg$ ✓ Boe по: Количество интервалов по ОХ: Предприятие Максимум: 75; РД рекомендует:15 Дата (период) измерений Оформление графика: ✓ Bce  $\neg$ c: 01.01.2009 no: 11.09.2011 Заголовок: Графики результатов расчета показателей математиче Мощность, мВА: PHH Подразделение предприятия: ✓ Bce Подпись:  $\neg$ ✓ Bce c: ✓ Bce no: -Рис. Класс напряжения Масло Защита 🖺 Выгрузка 📆 Расч. Тренд **МО-время** □ Bce 220 ☐ Bce • ☐ Bce ΓK пленочная 🗠 Спладить 🧽 Чистка 🛮 📥 Диспер.Ан 🌅 Однордн. **У**зел Тип сил, трансофрматора: Еписп ан= Г Вс∈ Бак **Уровень** Мат.ожид. Дисперсия Кол-во -✓ Bce • Общее Завод изготовитель N 1 ☐ Bce 3T3 -N 2 N 3 N 4 N 5



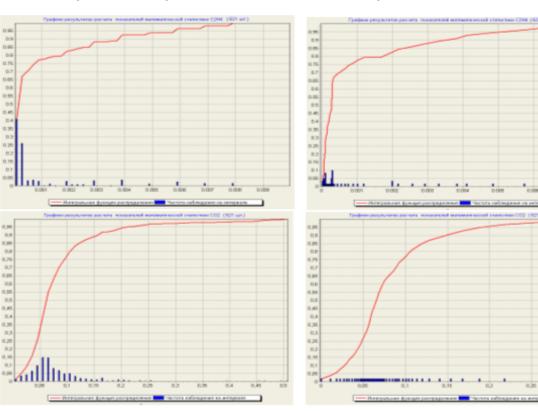
### Определение граничных значений концентраций газов по СО 34.46.302-00



Хтах-максимальная концентрация газа;

К - количество интервалов разбиения:

 $_{\Lambda}$  - величина интервала;


 $\overrightarrow{N}^{\kappa}$ - количество трансформаторов в выборке;

Gk - кол-во трансформаторов со значением концентрации на интервале k.



### Краткая суть методики, используемой в ЭДИС

- Увеличить количество интервалов разбиения до 50-70.
- Использовать медианный расчет интервалов.
- Применить сглаживание значений выборки скользящими медианами.
- Используя дисперсионный анализ определить необходимость разделения критериев оценки по конструктивным особенностям, сроку эксплуатации, региону, марке масла и т.д.



. I. Davidenko, Obtaining of estimating criteria of controlled parameters and their trends via statistical analysis of operating data / ISH 17-th International Symposium on Higt Voltage Engineering – Hannover, Germany, on August 22-26, 2011 6 Page

Давиденко И.В. Методика получения допустимых и предельно-допустимых значений контролируемых параметров маслонаполненного оборудования на основе массива наблюдаемых данных на примере анализа растворенных в масле газов / Журнал "Электричество" 2009 N 6 C. 10-21



### Допустимые значения параметров маслонаполненного

### • негерметичного оборудования 110 кВ (данные НИР авторов)

| Марка                                       | Срок<br>эксплуатации, лет |     |           |           |       |        |          |                 |
|---------------------------------------------|---------------------------|-----|-----------|-----------|-------|--------|----------|-----------------|
| масла                                       |                           |     | $W_{H2O}$ | $U_{IIP}$ | кч    | PBB    | tgδ 70°C | tgδ <u>90°C</u> |
| рпзл л                                      | 5-51-300-07 ДЗ            |     | 25        | 40        | 0,1   | 0,03   | 8        | 12              |
| РД34.45-51.300-97                           |                           | пдз | 30        | 35        | 0,25  | 0,03   | 10       | 15              |
|                                             |                           |     |           | TH 11     | 10 кВ |        |          |                 |
|                                             | 3-18                      | дз  | -         | 40        | 0.06  | -      | 2.0*     | 3.8             |
|                                             | 3-10                      | пдз | -         | 35        | 0.085 | _      | 2.7*     | 5.0             |
| Осталь                                      | 18-30                     | дз  | 25*       | 40        | 0.08  | 0.010  | 2.16*    | 4.5             |
| -ные∗                                       |                           | пдз | 29*       | 35        | 0.09  | 0.015  | 2.2*     | 6.5             |
|                                             | >30                       | дз  | -         | 40        | 0.12  | 0.018* | 1.43*    | 3.9*            |
|                                             |                           | пдз | -         | 35        | 0.14  | 0.020* | 2.0*     | 4.0*            |
| <u>СТ</u> 110 кВ                            |                           |     |           |           |       |        |          |                 |
|                                             | 5-15                      | дз  | 25        | 48*       | 0.04  | 0,011  | -        | 2.0             |
|                                             |                           | пдз | 27        | 42*       | 0,05  | 0,015  | -        | 3.5             |
| Осталь-                                     | 15-30                     | дз  | 29        | 47        | 0,05  | 0,012  | 2.0*     | 3,8             |
| ные*                                        |                           | пдз | 30        | 40        | 0,065 | 0,017  | 3.6*     | 6*              |
|                                             | > 20                      | дз  | 32*       | 46        | 0,07  | 0,014  | -        | 6               |
|                                             | >30                       | пдз | 34*       | 37*       | 0,085 | 0,017  | -        | 11*             |
| Остальные - все марки масел, кроме ГК и ТКп |                           |     |           |           |       |        |          |                 |

\* - малочисленная выборка данных

СТ, ТТ и ТН имеют отличия в условиях эксплуатации (например, разная масла), в объемах твердой изоляции, обладающей температура адсорбирующими свойствами и т.д. В масле СТ поддерживают содержание антиокислительной присадки, оказывающей свое воздействие на процессы старения масла, а в других видах оборудования, как правило, - нет.

Результат дисперсионного анализа ФХА: целесообразно дифференцирование: для **КЧ(РВВ)** –по виду оборудования (СТ и ИТ), по сроку эксплуатации и маркам масла (ГК, ТКп, остальные марки) ;

для **tgō масла** – по виду оборудования и сроку эксплуатации; для WH2O - по виду оборудования, сроку эксплуатации, маркам масел;



# **Б** Допустимые значения параметров маслонаполненного негерметичного оборудования 110 кВ (данные НИР авторов)

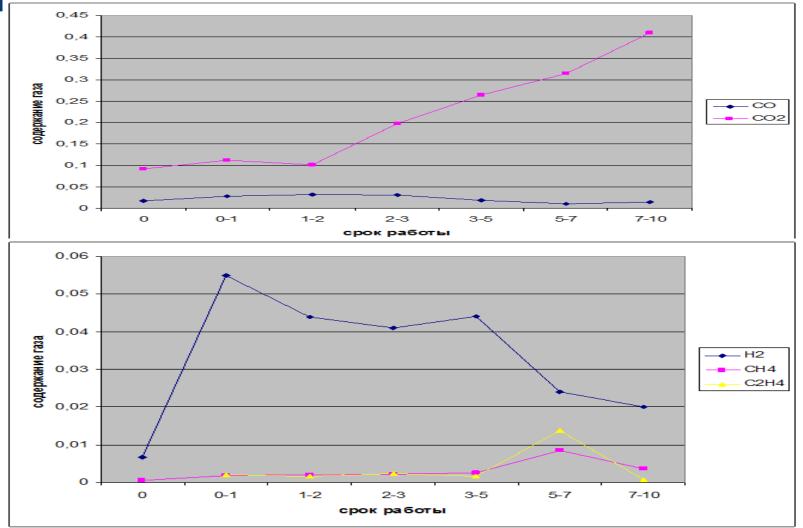
### Результат дисперсионного анализа АРГ: целесообразно дифференцирование:

- по виду оборудования (СТ и ТН, ТТ),
- виду защиты масла,
- по сроку эксплуатации ,
- маркам масла (ГК, ТКп, остальные марки) ;
- по классу напряжения

Марки масла были разделены на группы в соответствии с содержанием ароматических углеводородов, так как этот показатель влияет на характер процесса газообразования и старения масла:

ГК с минимальным содержанием СА=1,6-3%,

ТКп с максимальным содержанием СА=18%


остальные марки, со средним содержанием СА=9-15%.

| Марка          | Срок              | ПДЗ концентраций газов СТ 35кВ, % объема |        |        |         |         |       |      |         |
|----------------|-------------------|------------------------------------------|--------|--------|---------|---------|-------|------|---------|
| масла          | эксплуа-<br>тации | H2                                       | CH4    | C2H4   | C2H6    | C2H2    | СО    | CO2  | выборки |
| ГК             | <3                | 0.410                                    | 0.038  | 0.016  | 0.0048  | 0.00067 | 0.02  | 0.18 | 128     |
|                | >3                | 0.025                                    | 0.0006 | 0.0023 | 0.00045 | 0.0008  | 0.025 | 0.19 | 392     |
| Осталь-<br>ные | 3-16              | 0.010                                    | 0.0012 | 0.0024 | 0.0007  | 0.0005  | 0.019 | 0.19 | 404     |
|                | 16-39             | 0.009                                    | 0.0014 | 0.0042 | 0.00087 | 0.00054 | 0.040 | 0.29 | 1907    |
|                | >39               | 0.0085                                   | 0.023  | 0.045  | 0.0121  | 0.00086 | 0.044 | 0.45 | 239     |
| ТКп            | >16               | 0.0054                                   | 0.0096 | 0.043  | 0.0085  | 0.00150 | 0.023 | 0.38 | 300     |

<del>1</del>0

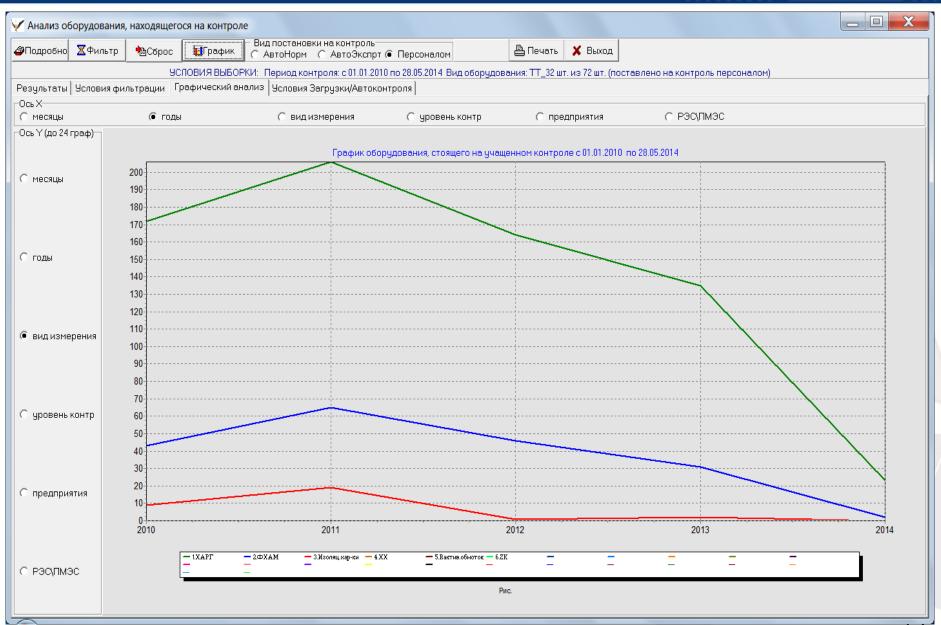


Результаты изменение ПДЗ (0,95) от срока работы ТС 110 кВ, залитых маслом ГК с пленочной защитой



И.В. Давиденко, К.В. Овчинников, Е.Д. Халикова, А.А.Борисенко Особенности оценки АРГ трансформаторов в приработочный период/ Доклады научно-практческой конференции по общим проблемам диагностики силового электрооборудования специалистов Сибири и Востока .г. Хабаровск 24 ÷ 27 апреля 2012 г. с.




### Граничные концентрации газов, растворенных в масле ИТ 110кВ, утвержденные СП ОАО «Тюменьэнерго»

С 2003г. в ОАО «Тюменьэнерго» производится АРГ масла ИТ 110кВ. С 2003 г оценка производилась по нормам СИГРЭ РГ15.16, но после набора массива данных в 2009г. разработаны собственные ПДЗ. После анализа применения своих ПДЗ в течение 4-х лет в 2014г. ПДЗ для ТТ пересмотрены в сторону повышения уровня ПДЗ до 98%;

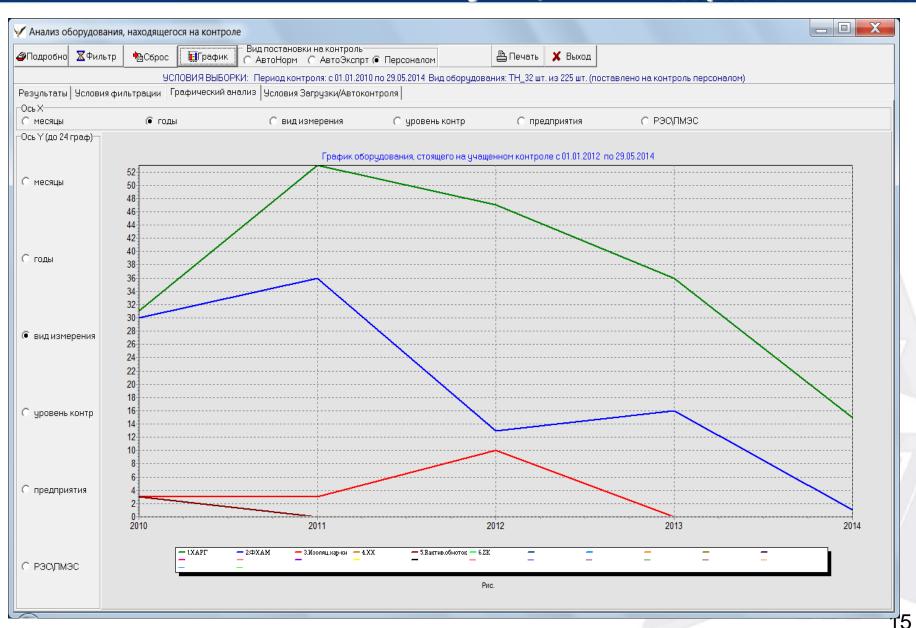
|          |                              |       | Содержание газов в масле, % об. |          |          |          |                 |          |  |
|----------|------------------------------|-------|---------------------------------|----------|----------|----------|-----------------|----------|--|
|          |                              | $H_2$ | CH <sub>4</sub>                 | $C_2H_4$ | $C_2H_2$ | $C_2H_6$ | CO <sub>2</sub> | CO       |  |
| «Тюмень- | ТТ-110кВ                     | 0,120 | 0,100                           | 0,001    | 0,0006   | 0,030    | 0,120           | 0,010    |  |
| энерго»  | до 15 лет включительно       |       |                                 |          |          |          |                 | ar ar ar |  |
|          | (2010r.) 0,95                |       |                                 |          |          |          |                 |          |  |
|          | ТТ-110кВ                     | 0,190 | 0,130                           | 0,0010   | 0,0010   | 0,049    | 0,140           | 0,014    |  |
|          | до 15 лет включительно       |       |                                 |          |          |          |                 | //       |  |
|          | (с 1999 г.в.) 260 шт.        |       |                                 |          |          |          |                 | / /      |  |
|          | 0,98                         |       |                                 |          |          |          |                 | 947      |  |
|          | выборка                      | 1885  | 2125                            | 2034     | 1552     | 1969     | 2146            | 2146     |  |
|          | ТТ-110кВ                     | 0,220 | 0,150                           | 0,0006   | 0,0002   | 0,045    | 0,130           | 0,014    |  |
|          | старше 15 лет                |       |                                 |          |          | - 4      |                 | // / F   |  |
|          | (2010r.) 0,95                |       |                                 |          |          |          |                 | H H in   |  |
|          | ТТ-110кВ                     | 0,280 | 0,200                           | 0,0014   | 0,0010   | 0,065    | 0,150           | 0,018    |  |
|          | старше 15 лет (до 1998 г.в.) |       |                                 |          |          |          | 20/07/0         | 7 N A    |  |
|          | 1898 шт.                     |       |                                 |          |          |          | 1               | VH H     |  |
|          | 0,98                         |       |                                 |          |          |          |                 |          |  |
|          | выборка                      | 3669  | 3973                            | 3835     | 2922     | 3815     | 3997            | 3999     |  |
|          | _                            |       |                                 |          |          |          |                 |          |  |



# Результат политики диагностирования ТТ: количество ТТ на учащенном контроле по СП






## Граничные концентрации газов, растворенных в масле ИТ 110кВ, утвержденные СП ОАО «Тюменьэнерго»

• для ТН – ПДЗ АРГ рассчитаны отдельно для разных типов НАМИ и НКФ, введен ПДЗ по влагосодержанию масла – 15 г/т

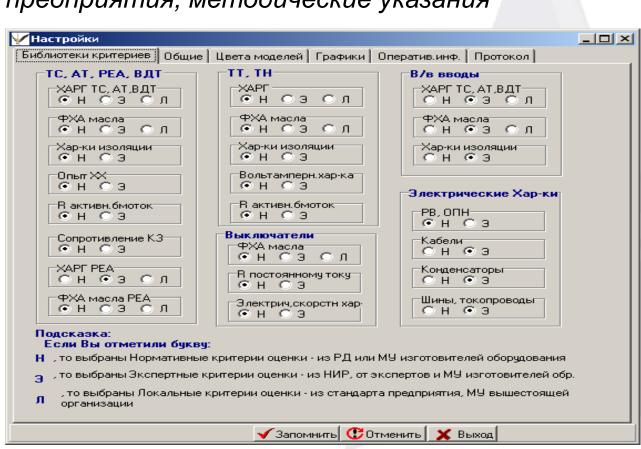
|                          | Класс U кВ,                                                   | Содержание газов в масле, % об. |                 |                               |          |          |                 |               |  |  |
|--------------------------|---------------------------------------------------------------|---------------------------------|-----------------|-------------------------------|----------|----------|-----------------|---------------|--|--|
|                          | Тип.                                                          | $\mathbf{H_2}$                  | CH <sub>4</sub> | C <sub>2</sub> H <sub>4</sub> | $C_2H_2$ | $C_2H_6$ | CO <sub>2</sub> | CO            |  |  |
| По опыту «МРСК<br>Волги» | ТН-110кВ НАМИ<br>Граничные в нормально                        | 0,0035                          | 0,00057         | 0,0009                        | 0,00048  | 0,0003   | 0,087           | 0,011         |  |  |
| 2 000                    | работающих<br>трансформаторах                                 |                                 |                 |                               |          |          |                 |               |  |  |
| «Тюменьэнерго»           | ТН-110кВ НАМИ                                                 | 0,0043                          | 0,0006          | 0,0006                        | 0,00052  | 0,0003   | 0,130           | 0,017         |  |  |
| (0,95)                   | 75 шт. (с 2003г.в.)                                           |                                 |                 |                               |          |          |                 | $A \setminus$ |  |  |
|                          | выборка                                                       | 86                              | 88              | 89                            | 86       | 86       | 90              | 90            |  |  |
|                          | ТН-110кВ<br>НКФ до 10 лет<br>включительно                     | 0,0007                          | 0,0003          | 0,0004                        | 0,00006  | 0,0006   | 0,120           | 0,009         |  |  |
|                          | (с 2004г.в.) 38 шт.<br>выборка                                | 485                             | 527             | 517                           | 425      | 499      | 526             | 531           |  |  |
|                          | ТН-110кВ<br>НКФ<br>старше 10 лет (до<br>2003г.в.)<br>1111 шт. | 0,0006                          | 0,0005          | 0,0009                        |          | 0,0006   | 0,130           | 0,012         |  |  |
|                          | выборка                                                       | 2057                            | 2428            | 2350                          | 1676     | 2194     | 2433            | 2416          |  |  |



# ТЮМЕНЬ Результат политики диагностирования ТН: ВНЕРГО количество ТН на учащенном контроле по СП






### База знаний – тестовый этап диагностики

- ЭДИС использует 3 библиотеки диагностических критериев:
- •Нормативную (источник РД)
- •Экспертную- дифференцированную по классу напряжения, виду оборудования, его герметичности, марке масла, сроку эксплуатации (источник НИР, экспертные знания).

•Локальную – стандарт предприятия, методические указания

изготовителя

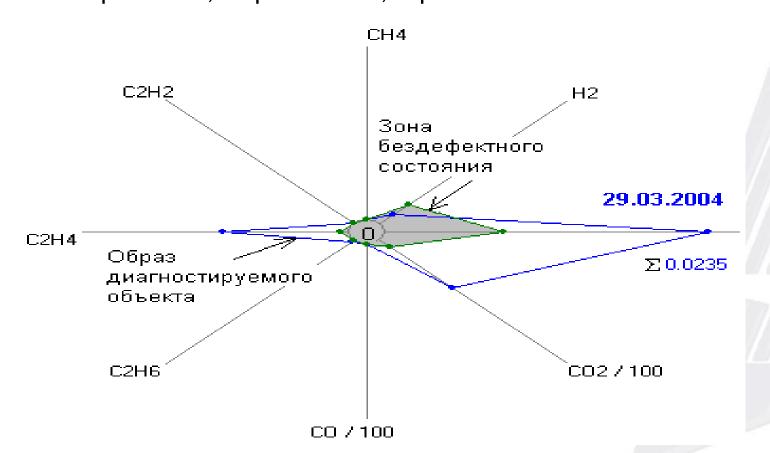
Пользователь сам выбирает, нужный ему в данное время набор критериев.





### База знаний – этап идентификации дефекта

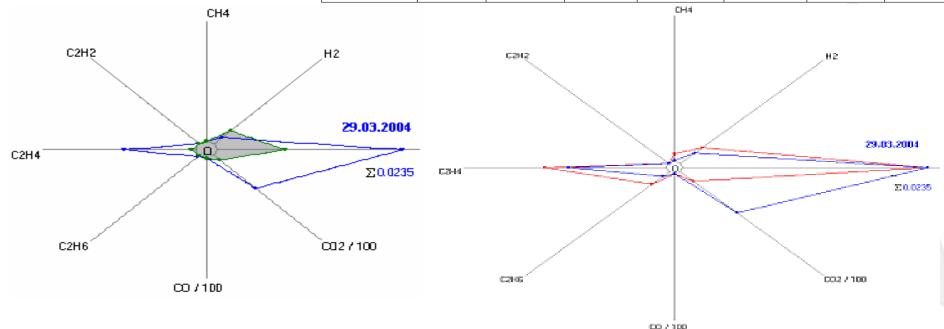
При идентификации дефекта по результатам АРГ используются сразу несколько методов:


- 1. Соотношение пар газов
- 2. Ансамбль характерных газов
- 3. Диаграмма состава газов относительно максимального
- 4. Лепестковая диаграмма Давиденко

База Знаний ЭДИС отличается от аналогов авторскими методиками диагностирования, защищенными патентами и являющимися ноу-хау программы:

- •Распознавание 14 дефектов силовых трансформаторов 35-750 кВ по результатам оценки результатов анализа растворенных в масле газов (АРГ), в т.ч. для трансформаторов 110 кВ с пленочной защитой;
- •Распознавание 12 дефектов ИТ по результатам АРГ
- •Распознавание 10 дефектов вводов по результатам АРГ.

# ТЮМЕНЬ Новая графическая модель ЭДИС интерпретации АРГ


Используются все 7 газов АРГ, выделена зона бездефектного состояния (ПДЗ АРГ), которая зависит от срока службы, класса напряжения, марки масла, герметичности исполнения.





### Пример диагностирования ЭДИС СТ 35 кВ

| TC 35 кВ, тип TM, год выпуска 1992, марка масла <u>ТСп</u> |        |         |        |         |         |        |       |  |  |
|------------------------------------------------------------|--------|---------|--------|---------|---------|--------|-------|--|--|
| Измеренные значения концентраций газов, % об               |        |         |        |         |         |        |       |  |  |
| Дата                                                       | H2     | CH4     | C2H4   | С2Н6    | C2H2    | СО     | CO2   |  |  |
| 29.03.2004                                                 | 0.0265 | 0.00091 | 0.0099 | 0.00154 | 0.00005 | 0.0205 | 0.825 |  |  |



- Результат распознавания наиболее близкий образ дефекта: "Высокотемпературный нагрев" (основной газ C2H4 - отображен красной лепестковой диаграммой).
- При выводе трансформатора в ремонт обнаружено: "Верхняя стяжная шпилька магнитопровода замыкала

"Верхняя стяжная шпилька магнитопровода замыкала на верхнее ярмо. Через отверстие в выхлопной трубе поступала влага. В расширителе трансформатора обнаружена вода и ржавчина".



### Новая графическая модель ЭДИС

### интерпретации АРГ

- Общепризнанно, что АРГ это точный и надежный метод оценки технического состояния оборудования.
- Методы интерпретации ХАР силовых трансформаторов не приемлемы для вводов и ИТ, так как у них есть свои особенности в причинах возникновения дефектов, конструкции, режимах эксплуатации, в т.ч. разные соотношения объемов бумага/масло

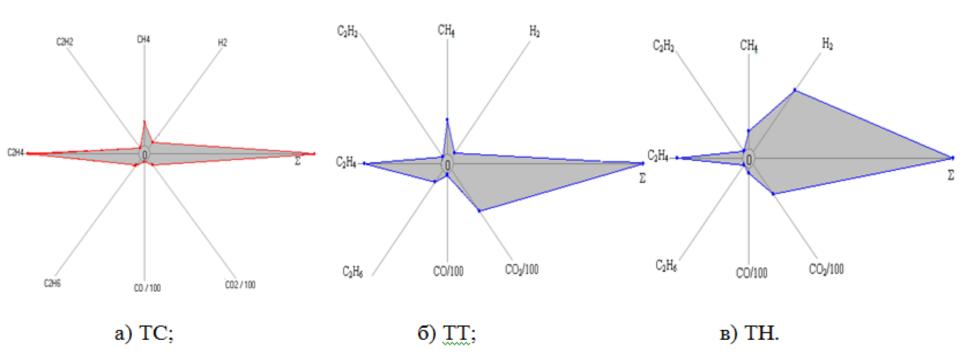


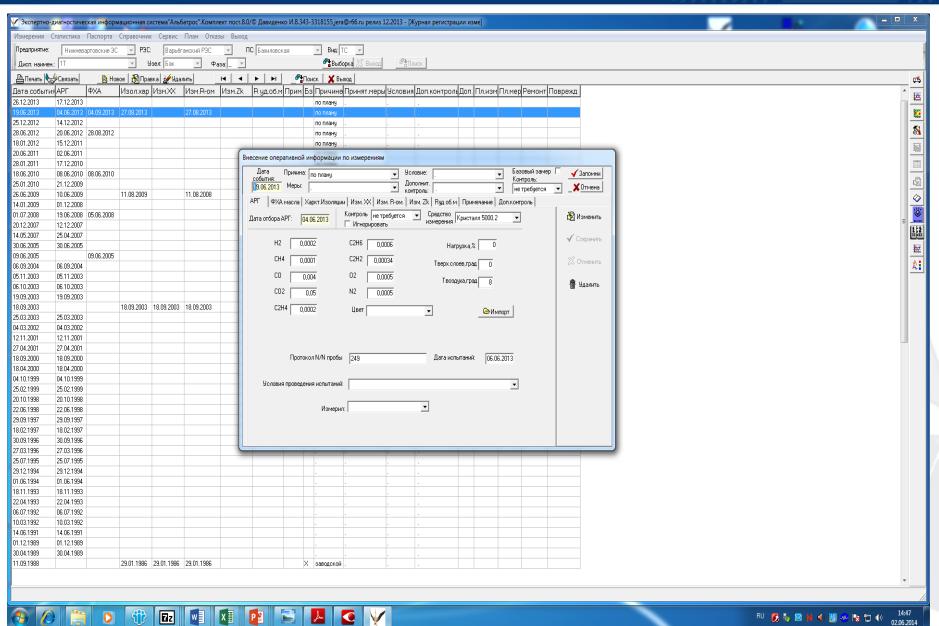

Рисунок 3 – Образы высокотемпературного нагрева для разных видов оборудования



### Выводы:

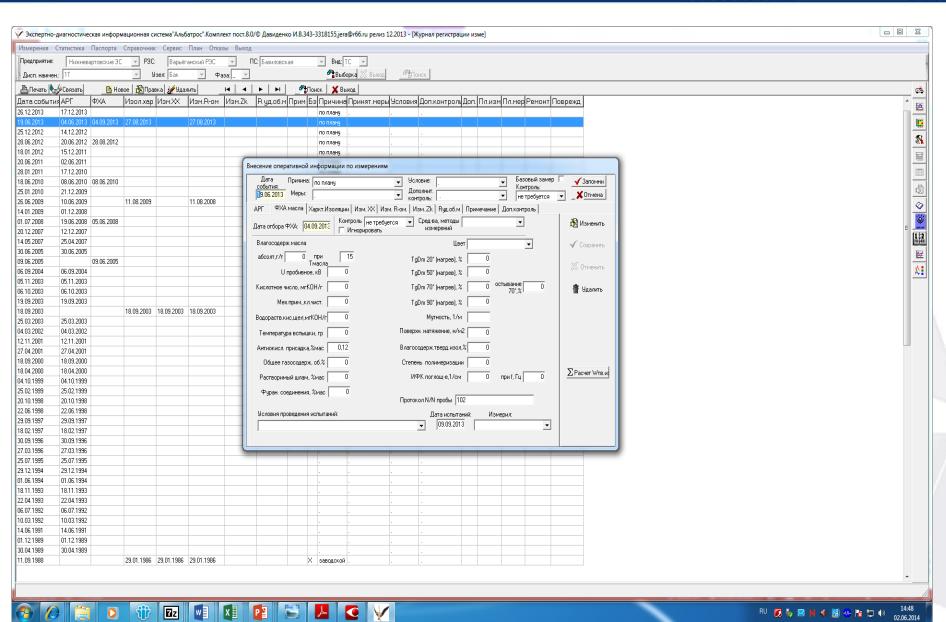
- 1. Проделанная работа еще раз показала:
- необходимость изменения РД в части критериев оценки параметров АРГ и ФХА в эксплуатации;
- пользу создания и применения СП;
- эффективность диагностирования TT и TH по APГ;
- эффективность диагностирования СТ35 кВ.
- 2. Использование электронных БД с массивами контролируемых параметров, а также, ПО, реализующего методики получения критериев диагностики оборудования (ЭДИС Альбатрос), позволяет получать качественные критерии оценки контролируемых параметров для разработки СП.
- 3. Использование ЭДИС позволяет своевременно отслеживать изменения, происходящие с парком оборудования, а также влияние на его тех.состояние управленческих решений (политики эксплуатации и диагностирования).
- 4. Квалифицированный анализ данных эксплуатации, позволяет получить новые знания в области диагностики и применить их при эксплуатации оборудования, что повышает надежность работы оборудования энергокомпании и продлевает срок его службы, а значит повышает ее конкурентную способность.




### Спасибо за внимание.

И.В. Давиденко, профессор кафедры ЭМ УралЭНИН УрФУ, 343-331-81-55, inguz21@yandex.ru

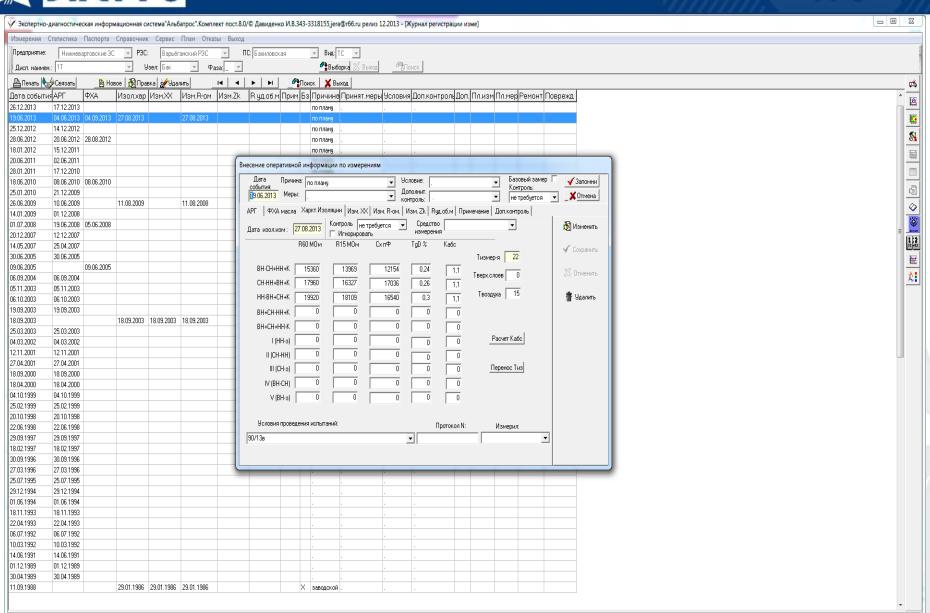
Владимирова М.Н. – ведущий инженер сектора диагностики Электротехнической службы ДЭиР ОАО «Тюменьэнерго» 3462-77-61-58, VladimirovaM@id.te.ru




### Вкладка занесения параметров АРГ СТ



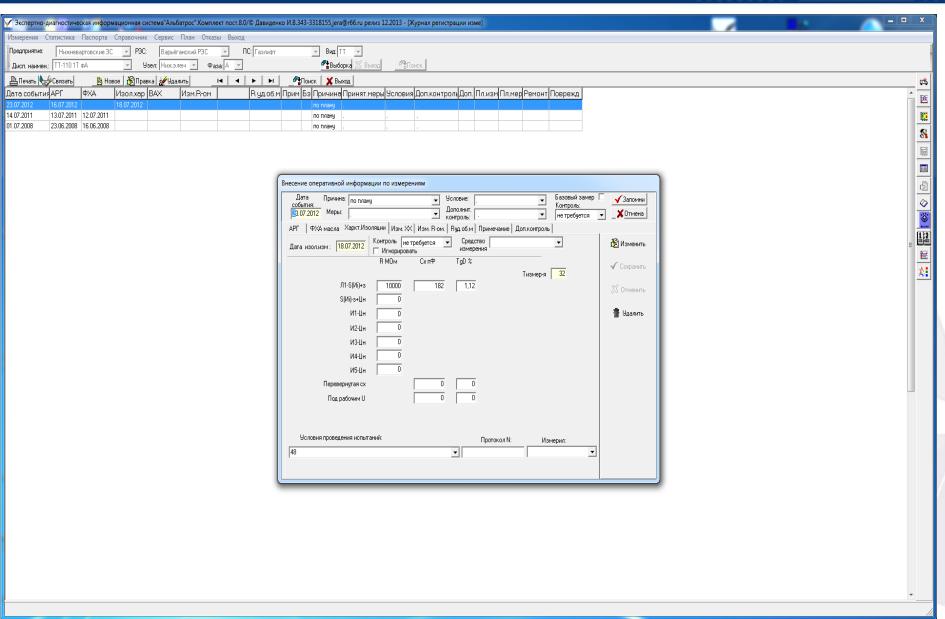



### Вкладка занесения параметров ФХА СТ





Πz

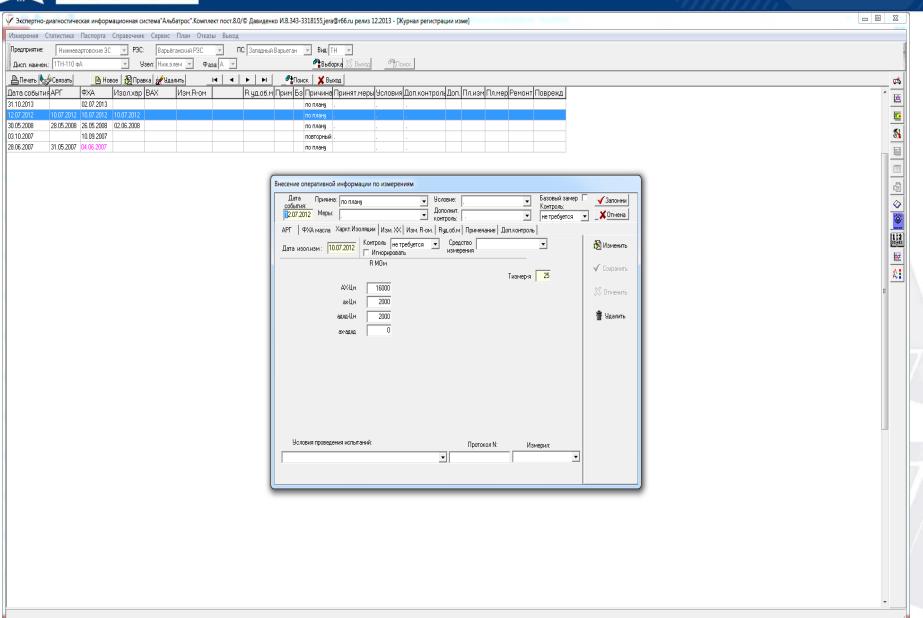

### Вкладка занесения параметров характеристик изоляции СТ







### Вкладка занесения параметров характеристик изоляции ТТ








Πz

### Вкладка занесения параметров характеристик изоляции ТН



RU **6** N 4 **9** N 4 18:01 02:06:2014