QUALITROL

On Line Monitoring of Circuit Breakers Brief Overview

SF₈ Emissions Reduction Partnership for Electric Power Systems

HV Circuit Breaker

David Cole - Technical Application Specialist June, 2014

- Types of Circuit Breaker
- Time Base Maintenance
- Condition Base Maintenance techniques

Condition Base Maintenance Solutions

- Air blast were the dominant circuit breaker technology in the 1960's.
- Oil as interrupting and insulating medium 1970's to early 1980's.
- The first circuit breakers using SF₆ gas as an interrupting and insulating medium were developed in the late 1960's. Commercially available in the late 1970's, SF₆ gas circuit breakers became the dominant circuit breaker technology in the 1980's and still remain until today.
- Vacuum circuit breaker technology was first introduced in the1960's

According to their services the circuit breaker can be divided as:

- 1) Outdoor circuit breaker
- 2) Indoor breaker

Outdoor type air insulated circuit breakers are classified as:

- 1) Dead tank type circuit breaker
- 2) Live tank type circuit breaker

1) Dead tank type circuit breaker

In dead tank type CB, the switching device is located, with suitable insulator supports inside a metallic vessel(s) at ground potential filled with insulating medium.

DTB has current transformer build in and tend to use larger control cabinet when compared with Live Tank Breakers.

2) Live tank type circuit breaker

In live tank circuit breaker, the interrupts are located in an insulated busing, at the system potential. The live tank circuit breakers are cheaper and required less mounting space.

Types of Circuit Breaker – Live Tank Breaker

One or two Interrupter per phase

- One breaking element
 - 1 interrupter
 - 1 support insulator
 - 1 mechanism housing

One Interrupter: up to 300kV

- Two breaking elements
 - 2 interrupters
 - 1 or 2 support insulator(s)
 - 2 mechanism housings

Two Interrupters : from 362 to 550kV

NOW 550kV is available with "ONE" interrupter unit

3

According to the operating mechanism of circuit breaker they can be divided as:

- 1) Spring operated circuit breaker
- 2) Pneumatic circuit breaker
- 3) Hydraulic circuit breaker

Q

CIGRE Final Report 2004-2007 Part 2 – Reliability of High Voltage SF6 Circuit Breakers

Type of Operating Mechanism / Total

Figure 2-7: CB service experience per kind of operating mechanism / present survey

- **Visual Inspection:**
 - Inspection intervals every 1 / 2 years
 - External Cleaning
 - Verify heating element
 - \Box SF₆ pressure
 - Fittings / valve verification
 - Structure Torque confirmation

QUALITROL Defining Reliability

Maintenance:

- **5**, 10, 15 years maintenance
- Limit of operations or 10/15 years Overhauling
- Adjustment's in M/S Velocity and MS Timing
- Contact Resistance
- Dynamic resistance
- Density Monitor Calibration inspection
- DewPoint of the SF₆ and Purity of the SF6
- SO2 Levels Contamination
- Search for SF6 Leakage
- Protection re-commissioning

keeping

everything

Close / Open Operation Analysis

www.qualitrolcorp.com

Dynamic Contact Resistance Test

Issues with Time Based Maintenance

- Difficult to keep up with maintenance schedules consequently maintenance intervals are increasing
- Maintenance on a breaker is not always necessary and sometimes can do more harm than good!
- Record keeping is sometimes an issue. This is important to monitor long term trends on specific breaker types
- Good to have an on line system to look in between the extended maintenance periods and emulate where possible the off line tests
- Good to have software to automatically analyse results and look for trends
- Eventually on line condition monitoring will replace time based maintenance

CBM Strategy

Interrupter Wear

Mechanical System

SF₆ Gas System

Electrical Controls & Auxiliaries

List of Monitoring

- □ Coil Continuity (Integrity)
- □ Total Travel (Stroke)
- □ Contact Velocity (Meters/s)
- □ Reaction Time (ms)
- □ Coil Energization Time (ms)
- □ Contact Wear (I²T)
- □ Trip Count (Oper. Counter)
- □ Auxiliary contacts (ms)
- Motor Current Signature
- □ Motor Charging time

- Pump start counts
- □ Tank/Gas Temperature
- □ Mech./Cab. Temperature
- Heater 1(On all the time)
- Heater 2 On (heater w/o thermostat)
- RMS Current
- □ Voltage (Fault Recording)
- Re-strike detection
- Smart SF6 sensors
- □ Leak Rate (%)

Phase Current

- Ring or Split Core CT's
- Ratio = 5000:1
- Nominal Values:
 - 1.0 A
 - 2.0 A
 - 5.0 A

Interrupter Wear Calculations

www.qualitrolcorp.com

SF₆ Monitoring – Density, Pressure, Temperature & Dewpoint

Sensors RS-485 / 4-20mA Modbus / DNP 3.0

SF₆ Monitoring – Density, Pressure, Temperature & Dewpoint

- Measure Heater Current
- Determine on/off condition
- Assemblies of 2 and 4 CT's Optional
- Ratio = 1000:1
- Ring or Split-Core

Temperature Sensor

- Resistive temperature devices (RTD)
- Resistance change: 38.5 Ω/ 100 ° C
- Mounting locations: tank, mechanism or cabinet

Coil Continuity (Integrity)

- Does not trip breaker
- Tolerates additional coil monitoring measures
- Works with variety of coils
- Coil Current
- Reaction time, coil finger print

Other Connection Points

Real Time Monitoring – NEW FEATURE

System Events and Records Alarms & Warnings	Manual Re Analog Ing	efresh 🛛 🖾 Au	ito refresh				
	Connecto	Name	Value	Dig	gital Inputs	Name	Value
Real Time Monitor Breaker Shot Records	ADC-1 ADC-2	Phase Current A Phase Current B	33703.20 Amps 33738.16 Amps		CT-1 CT-2	Trip Input 1 Trip Input 1 B/l	OFF U OFF
 Logged Events SF6 Monitor 	ADC-3 ADC-4	Phase Current C Voltage Input A	34645.56 Amps 1.4 kVolts		CT-3 CT-4	Close Input Breaker Aux 52	OFF 2A Input OFF
Configure Analog Inputs Configure Digital In/Outputs	ADC-5 ADC-6	Motor Current A	140.27 Amps		CT-5 CT-6	Breaker Aux 52 Heater 1 Input	2B Input OFF OFF
Configure Breaker Settings Maintenance	ADC-7 ADC-8 ADC-9	Trip Coil 1	-0.47 Amps		CT-8 CT-9	Heater 2 Input Trip Input 1 Trip Input 1	OFF
	ADC-10 ADC-11	Trip Coil 2	-0.23 Amps	C	CT-10	Spare - Not Use	ed OFF
	ADC-12 ADC-13 ADC-14	Close Coil 1	-6.42 Amps	C	Connector	Name	Value
	ADC-15	Station Battery	2.3 Volts	R	RTU-2 te	emperature	0.0 Celsius
	ADC-16	Console Temperature	186.6 Celsius	R	RTU-3 d	ensity ank humidity	0.00 g/L

Breaker Shot Record – Open Operation

-

Breaker Shot Record – Close Operation

Concept of Fingerprint with Alarm

- A breaker trip or close operation is stored as a reference of a good operation
- If measured parameters deviate by programmed limits during subsequent operations then an alarm is raised to allow more detailed inspection of the results
- Off line software collects regular data and looks for trends, for example, the early identification of SF6 gas leaks or changes to motor run time indicating problems with spring charging

Example of on line Breaker Condition Monitor

Description Qualitrol's BCM is a continuous (24x7) on-line condition monitoring system for 11kv to 1200kV Circuit Breakers. Our solution can provide monitoring for single breaker to multi-site for thousands of breakers with centralized comprehensive monitoring and reporting.

Application The BCM system provides continuous monitoring for the overall health of circuit breakers:

- Allows corrective actions to be taken before any failure occurs
- Optimize maintenance visits based on actual condition
- Optimize or reduce replacement or repair expenditures
- Ensure compliance to EPA SF₆ monitoring

GUALTROL® Thank You

